$V = 1918.36 (10) \text{ Å}^3$

 $0.53 \times 0.47 \times 0.13 \text{ mm}$

 $T_{\min} = 0.926, \ T_{\max} = 1.000$

16112 measured reflections

6303 independent reflections

2674 reflections with $I > 2\sigma(I)$

(expected range = 0.885 - 0.955)

Mo $K\alpha$ radiation

 $\mu = 0.35 \text{ mm}^-$

T = 203 K

 $R_{\rm int} = 0.037$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Chlorophenyl)-3-{[(1E)-(4-chlorophenyl)methylene]amino}-2,3-dihydroquinazolin-4(1H)-one

Ray J. Butcher,^a Jerry P. Jasinski,^b* B. Narayana,^c K. Sunil^c and H. S. Yathirajan^d

^aDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574199, India, and ^dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India Correspondence e-mail: jjasinski@keene.edu

Received 9 August 2007; accepted 5 September 2007

Key indicators: single-crystal X-ray study; T = 203 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.045; wR factor = 0.055; data-to-parameter ratio = 25.0.

The title molecule, C₂₁H₁₅Cl₂N₃O, consists of two coplanar 4chlorophenyl groups bonded to a distorted (envelope) dihydroquinazoline ring with a dihedral angle of $58.9(1)^{\circ}$ between the 4-chlorophenyl groups. The angles between the mean planes of the benzyl group of the nonplanar dihydroquinazoline group and those of the two 4-chlorophenyl groups are 82.0 (6) and 84.3 $(3)^{\circ}$, respectively. The torsion angle of the methylene amine linkage indicates a significant twist between the dihydroquinazolin-4(1H)-one and attached 4-chlorophenyl group. Disordered chlorine atoms (0.86:0.14) occur within the singly attached 4-chlorophenyl group bonded to the dihydroquinazoline ring. Crystal packing is stabilized by intermolecular N-H···O hydrogen bonding between dihydroquinazoline groups, linking the molecules into chains along the b axis.

Related literature

For related structures, see: Shi et al. (2004a, 2004b); Shi, Li, Shi, Zhuang & Zhang (2004); Shi, Shi et al. (2004); Vembu et al. (2006); Swamy & Ravikumar (2005); Chruszcz et al. (2007). For related literature, see: Hodnett & Dunn (1970); Alaimo & Russel (1972); Alaimo & Hatton (1972); Cremer & Pople (1975); Misra et al. (1981); Varma et al. (1986); Singh & Dash (1988); Pandey et al. (1999); El-Masry et al. (2000); Desai et al. (2001); Birch et al. (2005).

Experimental

Crystal data C21H15Cl2N3O $M_r = 396.26$ Monoclinic, $P2_1/n$ a = 6.8774 (2) Å b = 13.7315 (3) Å c = 20.4667 (8) Å $\beta = 97.010(3)^{\circ}$

Data collection

Oxford Diffraction Gemini diffractometer Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$wR(F^2) = 0.055$	independent and constrained
S = 1.63	refinement
6303 reflections	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
252 parameters	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O1^{i}$	0.854 (12)	2.153 (13)	2.9877 (15)	165.7 (12)
Symmetry code: (i)	$-x + \frac{3}{2}, y - \frac{1}{2}, -z$	$+\frac{3}{2}$.		

Data collection: CrysAlisPro (Oxford Diffraction, 2007); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

KS thanks the Department of Chemistry, Mangalore University for use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2054).

References

- Alaimo, R. J. & Hatton, C. J. (1972). J. Med. Chem. 15, 108-109.
- Alaimo, R. J. & Russel, H. E. (1972). J. Med. Chem. 15, 335-336.
- Birch, H. L., Buckley, G. M., Davies, N., Dyke, H. J., Frost, E. J., Gilbert, P. J., Hannah, D. R., Haughan, A. F., Madigan, M. J., Morgan, T., Pitt, W. R., Ratcliffe, A. J., Ray, N. C., Richard, M. D., Sharpe, A., Taylor, A. J., Whitworth, J. M. & Williams, S. C. (2005). Bioorg. Med. Chem. Lett. 15, 5335-5339.
- Chruszcz, M., Chinigo, G. M., Capitosti, S. M., Brown, M. L. & Minor, W. (2007). Acta Cryst. E63, 0891-0893.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90. El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429-1438.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.
- Misra, V. S., Singh, S., Agarwal, R. & Chaudhary, K. C. (1981). J. Chem. Soc. Pak. 3, 209-213.

- Oxford Diffraction (2007). CrysAlisPro (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Pandey, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Il Farm. 54, 624-628.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shi, D., Li, Z., Shi, C., Wang, X. & Zhang, Y. (2004a). Acta Cryst. E60, o2011-02013
- Shi, D., Li, Z., Shi, C., Zhuang, Q. & Zhang, Y. (2004). Acta Cryst. E60, o1992o1994.
- Shi, D.-Q., Li, Z.-Y., Shi, C.-L., Wang, X.-S. & Zhang, Y. (2004b). Acta Cryst. E60, o2465-o2467.
- Shi, D., Shi, C., Zhuang, Q. & Zhang, Y. (2004). Acta Cryst. E60, o2495-o2497. Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.
- Swamy, G. Y. S. K. & Ravikumar, K. (2005). Acta Cryst. E61, 04238-04240.
- Varma, R. S., Prakash, R., Khan, M. M. & Ali, A. (1986). Indian Drugs, 23, 345-349.
- Vembu, N., Spencer, E. C., Lee, J., Kelly, J. G., Nolan, K. B. & Devocelle, M. (2006). Acta Cryst. E62, o5003-o5005.

Acta Cryst. (2007). E63, o4025-o4026 [doi:10.1107/S1600536807043632]

2-(4-Chlorophenyl)-3-{[(1*E*)-(4-chlorophenyl)methylene]amino}-2,3-dihydroquinazolin-4(1*H*)-one

R. J. Butcher, J. P. Jasinski, B. Narayana, K. Sunil and H. S. Yathirajan

Comment

Substituted 2,3-dihydroquinazolin-4(1H)-ones are found to be potent inhibitors of inosine 5'-monophosphate dehydrogenase type II (Birch et al., 2005) and also are found to possess antibacterial (Alaimo & Russel, 1972) and anthelmentic activities (Alaimo & Hatton, 1972). Schiff bases are used as substrates in the preparation of number of industrial and biologically active compounds via ring closure, cycloaddition and replacement reactions. Some Schiff base derivatives were reported to possess antimicrobial, anti-inflammatory and central nervous system activities. Moreover, Schiff bases are also known to have biological activities such as antimicrobial (El-Masry et al., 2000; Pandey et al., 1999), antifungal (Singh & Dash, 1988; Varma et al., 1986), antitumor (Hodnett & Dunn, 1970., Misra et al., 1981; Desai et al., 2001), and also act as herbicides. The crystal structures of 3-(4-bromophenyl)-2,2-dimethyl-2,3-dihydroquinazolin-4(1H)-one (Shi, Li, Shi, Zhuang & Zhang, 2004), 3-(4-chlorophenyl)-3,4-dihydroquinazolin-2(1H)-one (Shi et al., 2004a), 6-chloro-3-(4-chlorophenyl)-3,4-dihydroquinazolin-2(1H)-one acetone hemisolvate (Shi et al., 2004b), 7-chloro-2,2-dimethyl-3-(4-methylphenyl)-1,2dihydroquinazolin-4(3H)-one (Shi, Shi et al., 2004), 2-(4-hydroxy-3-methoxyphenyl)-1-phenethyl-1,2-dihydroquinazolin-4(3H)-one (Swamy & Ravikumar, 2005), 5-chloro-3-hydroxy-2,2-dimethyl-2,3-dihydroquinazolin-4(1H)-one (Vembu et al., 2006) and 2-(biphenyl-4-yl)-2,3-dihydroquinazolin-4(1H)-one (Chruszcz et al., 2007) have been reported. A new quinazolinone containing Schiff base, $C_{21}H_{15}C_{12}N_3O$, has been synthesized and its crystal structure is reported. In our synthesis we expected the formation of 2-amino-N'-[(1E)-(4- chlorophenyl)methylene]benzohydrazide. Instead the aldehyde reacted with both primary amino groups and the cyclized form was created producing the title compound, (I).

The six-membered pyrimidin-4(1*H*)-one ring within the quinazoline group (C1—C2—C7—N1—C8—N2) is a distorted envleope with Cremer & Pople (1975) puckering parameters Q, θ and φ of 0.4372 (17) Å, 121.2 (2)° and 129.4 (2)°, respectively (Fig. 1). For an ideal envelope conformation, θ and φ are 54.7° and (60*n*)°, respectively. The angle between the mean planes of the two coplanar 4-chlorophenyl groups is 58.9 (1)°. The angles between the mean planes of the benzyl group of the nonplanar, dihydroquinazolin-4 group and those of the two 4-chlorophenyl groups are 82.0 (6) and 84.3 (3)%, respectively. The torsion angles of the methylene amine linkage [N3–N2–C1–C2 = 159.78 (13)° and N3–C15–C16–C21 = -165.29 (16)°] indicates a significant twist between the dihydroquinazolin-4(1*H*)-one and attached 4-chlorophenyl group. Crystal packing is stabilized by intermolecular N1—H1A···O1 hydrogen bonding between nearby dihydroquinazolin groups which link the molecules into chains along the *b* axis of the unit cell (Fig.2).

Experimental

A mixture of 2-aminobenzohydrazide (0.302 g, 0.002 mol) and 4-chlorobenzaldehyde (0.28 g, 0.002 mol) in 15 ml of absolute ethyl alcohol containing 2 drops of 4 *M* sulfuric acid was refluxed for about 3 h. On cooling, the solid separated was filtered and recrystallized from a solvent mixture (8:2) of ethyl acetate and DMF (m.p.: 466–468 K). Analysis found: C 63.52, H 3.76, N 10.49%; $C_{21}H_{15}Cl2N_{3}O$ requires: C 63.65, H 3.82, N 10.60%.

Refinement

The C—H atoms were positioned with idealized geometry and were refined isotropic with $U_{eq}(H) = 1.2 U_{eq}(c)$ using a riding model with C—H = 0.94 Å for aromatic and C—H = 0.99 Å for methine H atoms. The N—H H atom was located in difference map and was refined isotopic with varying coordinates. One chlorine atom is disordered in two positions and was refined anisotropic using a split model (s.o.f. = 0.143 (3) and 0.857 (3)).

Figures

Fig. 1. Molecular structure of the title compound, showing atom labeling and 50% probability displacement ellipsoids.

Fig. 2. Packing diagram for $C_{21}H_{15}Cl_2N_3O$ viewed down the *a* axis. Dashed lines indicate N—H···O intermolecular hydrogen bonds. Only the major component of the disordered chlorine atom (Cl2B) is displayed.

2-(4-Chlorophenyl)-3-{[(1E)-(4-chlorophenyl)methylene]amino}-2,3- dihydroquinazolin-4(1H)-one

$F_{000} = 816$
$D_{\rm x} = 1.372 \ {\rm Mg \ m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 4254 reflections
$\theta = 4.7 - 32.5^{\circ}$
$\mu = 0.35 \text{ mm}^{-1}$
T = 203 K
Plate, colorless
$0.53\times0.47\times0.13~mm$

Data collection

Oxford Diffraction Gemini diffractometer	2674 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.037$

Monochromator: graphite	$\theta_{\text{max}} = 32.6^{\circ}$
T = 203 K	$\theta_{\min} = 4.7^{\circ}$
φ and ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)	$k = -18 \rightarrow 20$
$T_{\min} = 0.926, T_{\max} = 1.000$	$l = -29 \rightarrow 30$
16112 measured reflections	Standard reflections: ?
6303 independent reflections	

D.	r			
RO	บท	on	10	иτ

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.055$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.63	$(\Delta/\sigma)_{\rm max} = 0.002$
6303 reflections	$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
252 parameters	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. A disordered chlorine atom, Cl2A [(0.143 (3)] & Cl2B [0.857 (3)], occurs within the singly attached 4-chlorophenyl group to the dihydroquinazolin-4 ring and was refined so that their occupancies summed to 1.

					- 7	
\mathbf{F} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i}	1 • • • • • • • • • • • • • • • • • • •	• 1 . • . • •	• 1		1 84	- \
Εκαστιομαί ατομίς σοοκαιματές αμ	ι ιςοικοπις ον ρι	מווועמופחד וכהדיהחור מ	isniacement	narameters i	A	1
i i actional alonne coorainales and		<i>fuiraichi ison opic a</i>	spiacement	parameters	11	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C11	-0.10011 (6)	0.67297 (3)	1.01418 (2)	0.06572 (16)	
Cl2A	0.2071 (12)	0.0619 (3)	0.9802 (4)	0.0822 (5)	0.143 (3)
Cl2B	0.1030 (2)	0.06077 (5)	0.94734 (8)	0.0822 (5)	0.857 (3)
01	0.65192 (12)	0.52725 (6)	0.74083 (5)	0.0381 (3)	
N1	0.74123 (16)	0.23816 (9)	0.75887 (6)	0.0327 (3)	
H1A	0.7714 (16)	0.1785 (9)	0.7664 (6)	0.034 (4)*	
N2	0.59892 (14)	0.38310 (7)	0.79096 (6)	0.0289 (3)	

N3 C1 C2	0.51282 (17) 0.68930 (18) 0.83198 (18)	0.43070 (8) 0.43957 (10)	0.84227 (6) 0.74828 (7)	0.0365 (3) 0.0302 (4)
C1 C2	0.68930 (18) 0.83198 (18)	0.43957 (10)	0.74828 (7)	0.0302(4)
C2	0.83198 (18)			0.0502(1)
		0.38806 (9)	0.71214 (7)	0.0277 (3)
C3	0.94084 (19)	0.43931 (10)	0.67071 (7)	0.0392 (4)
H3A	0.9251	0.5071	0.6663	0.047*
C4	1.0717 (2)	0.39151 (11)	0.63603 (8)	0.0461 (5)
H4A	1.1477	0.4266	0.6089	0.055*
C5	1.09004 (19)	0.29123 (11)	0.64157 (8)	0.0438 (4)
H5A	1.1773	0.2583	0.6173	0.053*
C6	0.98294 (18)	0.23944 (10)	0.68187 (7)	0.0366 (4)
H6A	0.9965	0.1714	0.6849	0.044*
C7	0.85406 (18)	0.28752 (9)	0.71830 (7)	0.0290 (3)
C8	0.68991 (19)	0.28985 (9)	0.81588 (8)	0.0348 (4)
H8A	0.8092	0.3031	0.8468	0.042*
C9	0.5468 (2)	0.23071 (9)	0.84980 (8)	0.0311 (4)
C10	0.5939 (2)	0.19858 (10)	0.91276 (9)	0.0454 (4)
H10A	0.7185	0.2122	0.9351	0.055*
C11	0.4605 (3)	0.14606 (11)	0.94427 (9)	0.0576 (5)
H11A	0.4933	0.1247	0.9879	0.069*
C12	0.2817 (3)	0.12593 (11)	0.91110 (11)	0.0555 (5)
C13	0.2316 (2)	0.15577 (11)	0.84789 (11)	0.0562 (5)
H13A	0.1078	0.1407	0.8254	0.067*
C14	0.3658 (2)	0.20870 (10)	0.81721 (8)	0.0454 (4)
H14A	0.3326	0.2298	0.7736	0.055*
C15	0.3577 (2)	0.47659 (10)	0.82277 (8)	0.0366 (4)
H15A	0.3095	0.4768	0.7778	0.044*
C16	0.2520 (2)	0.52966 (9)	0.86972 (8)	0.0307 (4)
C17	0.3345 (2)	0.54820 (10)	0.93330 (8)	0.0425 (4)
H17A	0.4655	0.5304	0.9463	0.051*
C18	0.2287 (2)	0.59239 (10)	0.97826 (8)	0.0448 (4)
H18A	0.2860	0.6043	1.0216	0.054*
C19	0.0381 (2)	0.61862 (10)	0.95834 (9)	0.0394 (4)
C20	-0.0444 (2)	0.60432 (11)	0.89521 (9)	0.0514 (5)
H20A	-0.1738	0.6245	0.8819	0.062*
C21	0.0633 (2)	0.55979 (11)	0.85062 (8)	0.0464 (4)
H21A	0.0067	0.5501	0.8069	0.056*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0652 (3)	0.0591 (3)	0.0796 (4)	0.0083 (2)	0.0364 (3)	-0.0211 (3)
Cl2A	0.0861 (9)	0.0506 (3)	0.1259 (10)	-0.0030 (4)	0.0771 (8)	0.0145 (5)
Cl2B	0.0861 (9)	0.0506 (3)	0.1259 (10)	-0.0030 (4)	0.0771 (8)	0.0145 (5)
01	0.0502 (6)	0.0192 (6)	0.0473 (7)	0.0034 (5)	0.0154 (5)	0.0021 (5)
N1	0.0446 (7)	0.0153 (7)	0.0414 (9)	0.0031 (6)	0.0183 (7)	-0.0006 (7)
N2	0.0390 (7)	0.0177 (6)	0.0323 (8)	0.0055 (5)	0.0138 (6)	0.0015 (6)
N3	0.0462 (8)	0.0272 (7)	0.0388 (9)	0.0043 (6)	0.0159 (7)	0.0001 (7)
C1	0.0365 (9)	0.0222 (8)	0.0316 (10)	-0.0041 (7)	0.0034 (8)	-0.0022 (8)

C2	0.0347 (8)	0.0186 (8)	0.0310 (9)	0.0002 (6)	0.0090 (7)	-0.0011 (7)
C3	0.0552 (10)	0.0225 (8)	0.0429 (11)	-0.0029 (8)	0.0178 (9)	0.0002 (8)
C4	0.0635 (11)	0.0322 (10)	0.0486 (12)	-0.0055 (8)	0.0310 (10)	0.0003 (9)
C5	0.0521 (10)	0.0361 (9)	0.0483 (12)	0.0003 (8)	0.0257 (9)	-0.0045 (9)
C6	0.0470 (9)	0.0213 (8)	0.0446 (11)	0.0027 (7)	0.0179 (9)	-0.0018 (8)
C7	0.0330 (8)	0.0233 (8)	0.0317 (10)	-0.0019 (7)	0.0083 (7)	0.0002 (8)
C8	0.0403 (9)	0.0241 (8)	0.0418 (11)	0.0034 (7)	0.0121 (8)	0.0034 (8)
C9	0.0378 (9)	0.0201 (8)	0.0373 (11)	0.0029 (7)	0.0125 (8)	0.0003 (8)
C10	0.0588 (10)	0.0349 (9)	0.0422 (12)	-0.0011 (8)	0.0043 (10)	-0.0027 (9)
C11	0.1026 (15)	0.0367 (11)	0.0379 (12)	-0.0006 (11)	0.0270 (12)	0.0049 (9)
C12	0.0733 (13)	0.0266 (9)	0.0777 (16)	0.0010 (9)	0.0538 (13)	0.0019 (11)
C13	0.0358 (10)	0.0399 (10)	0.0956 (18)	-0.0014 (8)	0.0192 (11)	0.0007 (11)
C14	0.0478 (10)	0.0373 (9)	0.0516 (13)	0.0035 (8)	0.0075 (10)	0.0085 (9)
C15	0.0431 (9)	0.0319 (9)	0.0359 (11)	-0.0035 (8)	0.0090 (8)	0.0034 (8)
C16	0.0362 (9)	0.0239 (8)	0.0330 (10)	0.0025 (7)	0.0083 (8)	0.0005 (8)
C17	0.0409 (9)	0.0441 (10)	0.0429 (12)	0.0172 (8)	0.0069 (9)	0.0032 (9)
C18	0.0499 (10)	0.0464 (10)	0.0380 (11)	0.0103 (8)	0.0054 (9)	-0.0061 (9)
C19	0.0425 (10)	0.0282 (8)	0.0507 (12)	0.0036 (7)	0.0181 (9)	-0.0056 (9)
C20	0.0324 (9)	0.0636 (12)	0.0584 (14)	0.0069 (8)	0.0060 (10)	-0.0090 (11)
C21	0.0392 (9)	0.0562 (10)	0.0433 (11)	0.0010 (8)	0.0030 (9)	-0.0110 (9)

Geometric parameters (Å, °)

1.7410 (14)	C8—H8A	0.9900
1.793 (6)	C9—C10	1.3630 (19)
1.7556 (17)	C9—C14	1.3722 (18)
1.2367 (14)	C10-C11	1.386 (2)
1.3815 (16)	C10—H10A	0.9400
1.4457 (17)	C11—C12	1.359 (2)
0.854 (12)	C11—H11A	0.9400
1.3722 (16)	C12—C13	1.361 (2)
1.4258 (14)	C13—C14	1.384 (2)
1.4878 (15)	C13—H13A	0.9400
1.2610 (15)	C14—H14A	0.9400
1.4789 (17)	C15—C16	1.4677 (18)
1.3892 (17)	C15—H15A	0.9400
1.3929 (17)	C16—C21	1.3723 (17)
1.3786 (17)	C16—C17	1.3786 (18)
0.9400	C17—C18	1.3814 (18)
1.3862 (18)	C17—H17A	0.9400
0.9400	C18—C19	1.3724 (18)
1.3699 (17)	C18—H18A	0.9400
0.9400	C19—C20	1.361 (2)
1.3924 (16)	C20—C21	1.3861 (19)
0.9400	C20—H20A	0.9400
1.5090 (17)	C21—H21A	0.9400
117.04 (12)	С9—С10—Н10А	119.5
115.9 (9)	C11—C10—H10A	119.5
113.8 (9)	C12—C11—C10	118.91 (16)
	1.7410 (14) 1.793 (6) 1.7556 (17) 1.2367 (14) 1.3815 (16) 1.4457 (17) 0.854 (12) 1.3722 (16) 1.4258 (14) 1.4258 (14) 1.4878 (15) 1.2610 (15) 1.4789 (17) 1.3892 (17) 1.3786 (17) 0.9400 1.362 (18) 0.9400 1.3699 (17) 0.9400 1.3924 (16) 0.9400 1.5090 (17) 117.04 (12) 113.8 (9)	1.7410(14)C8—H8A $1.793(6)$ C9—C10 $1.7556(17)$ C9—C14 $1.2367(14)$ C10—C11 $1.3815(16)$ C10—H10A $1.4457(17)$ C11—C12 $0.854(12)$ C11—H11A $1.3722(16)$ C12—C13 $1.4258(14)$ C13—C14 $1.4878(15)$ C13—H13A $1.2610(15)$ C14—H14A $1.4789(17)$ C15—C16 $1.3892(17)$ C15—H15A $1.3929(17)$ C16—C21 $1.3786(17)$ C16—C17 0.9400 C17—C18 $1.3862(18)$ C17—H17A 0.9400 C19—C20 $1.3924(16)$ C20—C21 0.9400 C20—H20A $1.5090(17)$ C21—H21A $117.04(12)$ C9—C10—H10A $113.8(9)$ C12—C11—C10

C1—N2—N3	118.10 (10)	C12—C11—H11A	120.5
C1—N2—C8	120.02 (10)	C10-C11-H11A	120.5
N3—N2—C8	109.70 (11)	C11—C12—C13	121.48 (16)
C15—N3—N2	114.02 (13)	C11—C12—Cl2B	122.01 (18)
O1—C1—N2	121.67 (12)	C13—C12—Cl2B	116.50 (18)
O1—C1—C2	122.99 (13)	C11—C12—Cl2A	92.0 (3)
N2—C1—C2	115.33 (12)	C13—C12—Cl2A	146.5 (4)
C3—C2—C7	119.76 (12)	Cl2B—Cl2—Cl2A	30.1 (3)
C3—C2—C1	120.20 (12)	C12—C13—C14	118.95 (17)
C7—C2—C1	120.03 (13)	С12—С13—Н13А	120.5
C4—C3—C2	120.50 (13)	C14—C13—H13A	120.5
С4—С3—НЗА	119.7	C9—C14—C13	120.71 (16)
С2—С3—НЗА	119.7	C9—C14—H14A	119.6
C3—C4—C5	119.29 (14)	C13—C14—H14A	119.6
C3—C4—H4A	120.4	N3—C15—C16	120.56 (14)
С5—С4—Н4А	120.4	N3—C15—H15A	119.7
C6—C5—C4	120.99 (14)	C16—C15—H15A	119.7
С6—С5—Н5А	119.5	C21—C16—C17	118.64 (14)
C4—C5—H5A	119.5	C21—C16—C15	119.34 (15)
C5—C6—C7	120.02 (13)	C17—C16—C15	121.99 (13)
С5—С6—Н6А	120.0	C16—C17—C18	121.34 (14)
С7—С6—Н6А	120.0	C16—C17—H17A	119.3
N1—C7—C6	122.02 (12)	C18—C17—H17A	119.3
N1—C7—C2	118.53 (12)	C19—C18—C17	118.64 (15)
C6—C7—C2	119.41 (13)	C19—C18—H18A	120.7
N1—C8—N2	106.24 (12)	C17—C18—H18A	120.7
N1—C8—C9	110.14 (11)	C20-C19-C18	121.11 (15)
N2—C8—C9	110.50 (10)	C20—C19—Cl1	119.17 (13)
N1—C8—H8A	110.0	C18—C19—Cl1	119.71 (14)
N2—C8—H8A	110.0	C19—C20—C21	119.64 (15)
С9—С8—Н8А	110.0	C19—C20—H20A	120.2
C10—C9—C14	119.02 (14)	C21—C20—H20A	120.2
C10—C9—C8	121.07 (14)	C16—C21—C20	120.54 (16)
C14—C9—C8	119.92 (14)	C16—C21—H21A	119.7
C9—C10—C11	120.92 (16)	C20—C21—H21A	119.7
C1—N2—N3—C15	72.35 (15)	N1-C8-C9-C10	117.64 (15)
C8—N2—N3—C15	-145.13 (11)	N2-C8-C9-C10	-125.28 (14)
N3—N2—C1—O1	-20.85 (19)	N1-C8-C9-C14	-62.48 (16)
C8—N2—C1—O1	-159.42 (13)	N2-C8-C9-C14	54.59 (17)
N3—N2—C1—C2	159.47 (11)	C14—C9—C10—C11	-1.3 (2)
C8—N2—C1—C2	20.89 (18)	C8—C9—C10—C11	178.60 (13)
O1—C1—C2—C3	4.3 (2)	C9—C10—C11—C12	0.7 (2)
N2—C1—C2—C3	-176.04 (12)	C10-C11-C12-C13	0.3 (2)
O1—C1—C2—C7	-174.11 (13)	C10-C11-C12-Cl2B	-179.45 (11)
N2-C1-C2-C7	5.58 (19)	C10-C11-C12-Cl2A	179.9 (2)
C7—C2—C3—C4	-0.5 (2)	C11—C12—C13—C14	-0.7 (2)
C1—C2—C3—C4	-178.91 (13)	Cl2B—C12—C13—C14	179.05 (11)
C2—C3—C4—C5	1.7 (2)	Cl2A—C12—C13—C14	-180.0 (3)
C3—C4—C5—C6	-1.2 (2)	C10—C9—C14—C13	0.8 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6—C7	-0.3 (2)	C8—C9—C14—C13	-179.04 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N1—C7—C6	150.60 (13)	C12—C13—C14—C9	0.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N1—C7—C2	-31.76 (19)	N2—N3—C15—C16	-179.84 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—C7—N1	179.12 (13)	N3-C15-C16-C21	-165.09 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—C7—C2	1.5 (2)	N3-C15-C16-C17	13.2 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C7—N1	-178.77 (13)	C21-C16-C17-C18	2.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C7—N1	-0.4 (2)	C15-C16-C17-C18	-175.57 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C7—C6	-1.1 (2)	C16-C17-C18-C19	-0.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C7—C6	177.32 (13)	C17—C18—C19—C20	-1.9 (2)
C7-N1-C8-C9172.93 (12)C18-C19-C20-C212.0 (2)C1-N2-C8-N1-48.54 (15)C11-C19-C20-C21-179.03 (12)N3-N2-C8-N1169.77 (10)C17-C16-C21-C20-2.6 (2)C1-N2-C8-C9-168.00 (13)C15-C16-C21-C20175.72 (14)N3-N2-C8-C950.31 (15)C19-C20-C21-C160.3 (2)	C7—N1—C8—N2	53.23 (15)	C17—C18—C19—Cl1	179.14 (11)
C1—N2—C8—N1-48.54 (15)Cl1—C19—C20—C21-179.03 (12)N3—N2—C8—N1169.77 (10)C17—C16—C21—C20-2.6 (2)C1—N2—C8—C9-168.00 (13)C15—C16—C21—C20175.72 (14)N3—N2—C8—C950.31 (15)C19—C20—C21—C160.3 (2)	C7—N1—C8—C9	172.93 (12)	C18—C19—C20—C21	2.0 (2)
N3—N2—C8—N1169.77 (10)C17—C16—C21—C20-2.6 (2)C1—N2—C8—C9-168.00 (13)C15—C16—C21—C20175.72 (14)N3—N2—C8—C950.31 (15)C19—C20—C21—C160.3 (2)	C1—N2—C8—N1	-48.54 (15)	Cl1—C19—C20—C21	-179.03 (12)
C1—N2—C8—C9-168.00 (13)C15—C16—C21—C20175.72 (14)N3—N2—C8—C950.31 (15)C19—C20—C21—C160.3 (2)	N3—N2—C8—N1	169.77 (10)	C17—C16—C21—C20	-2.6 (2)
N3—N2—C8—C9 50.31 (15) C19—C20—C21—C16 0.3 (2)	C1—N2—C8—C9	-168.00 (13)	C15-C16-C21-C20	175.72 (14)
	N3—N2—C8—C9	50.31 (15)	C19—C20—C21—C16	0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A····O1 ⁱ	0.854 (12)	2.153 (13)	2.9877 (15)	165.7 (12)
Symmetry codes: (i) $-x+3/2$, $y-1/2$, $-z+3/2$.				

Fig. 2